Characterizing Stream-Aquifer Exchanges: From Models to Measurements

Jeffrey C. Davids October 02, 2024

Sustainable Groundwater Management Act Sustainability Indicators

Sustainability	Lowering	Reduction	Seawater	Degraded	Land	Surface Water
Indicators	GW Levels	of Storage	Intrusion	Quality	Subsidence	Depletion
Metric(s) Defined in GSP Regulations	• Groundwater Elevation	• Extraction Volume	 Chloride concentration isocontour 	 Migration of Plumes Number of supply wells Volume Location of isocontour 	 Rate and Extent of Land Subsidence 	 Volume or rate of surface water depletion

Characterizing Stream-Aquifer Exchanges

Slide 2

3

Serving Stewards of Western Water Since 1993

Source: The Nature Conservancy (Maurice Hall)

4

Serving Stewards of Western Water Since 1993

Source: The Nature Conservancy (Maurice Hall)

5

Serving Stewards of Western Water Since 1993

Source: The Nature Conservancy (Maurice Hall)

Serving Stewards of Western Water Since 1993

Serving Stewards of Western Water Since 1993

Serving Stewards of Western Water Since 1993

DWR Interconnected Surface Water Depletion (Undesirable Result 6) Guidance Documents

- Paper 1: Introduction
- Paper 2: Techniques for Estimating Interconnected Surface Water Depletion Caused by Groundwater Use
- Paper 3: Examples for Estimating Interconnected Surface Water Depletion Caused by Groundwater Use

CALIFORNIA DEPARTMENT OF WATER RESOURCES SUSTAINABLE GROUNDWATER MANAGEMENT OFFICE

Depletions of Interconnected Surface Water AN INTRODUCTION

February 2024

Characterizing Stream-Aquifer Exchanges

10/02/2024

Case Study I - Big Chico Creek

Characterizing Stream-Aquifer Exchanges

Slide 10

Serving Stewards of Western Water Since 1993

Butte Basin GW Model Vina Subbasin

- Groundwater Sustainability Plan Regulations require:
 - Identification of interconnected surface water systems within the basin
 - An estimate of the quantity and timing of depletions of those systems,
- …"utilizing data available from the Department, as specified in Section 353.2, or the best available information."

Characterizing Stream-Aquifer Exchanges

Serving Stewards of Western Water Since 1993

Source: Vina Subbasin Gaining and Losing Stream Reaches based on BBGM, Water Year 2000 to 201

Vina Subasin Butte Basin Groundwater Model -Stream-Aquifer Interaction Estimates

	Monthly Gains from Groundwater (cfs)										Average		
Stream	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	(cfs)
Angel Slough	0	0	0	0	0	0	0	0	0	0	0	0	0
Big Chico Creek	-2	-3	-6	-7	-7	-8	-5	-3	-2	-2	-2	-1	-4
Butte Creek	-7	-10	-15	-15	-18	-20	-18	-14	-10	-7	-6	-6	-12
Dry Creek	-1	-1	-3	-2	-2	-2	-1	0	0	0	0	0	-1
Little Chico Creek	-1	-1	-2	-2	-2	-2	-2	-1	-1	-1	-1	-1	-1
Little Dry Creek	-2	-3	-6	-6	-6	-5	-4	-2	-2	-1	-1	-1	-3
Mud Creek	0	0	-1	1	1	2	2	1	1	0	0	0	0
Pine Creek	-1	-2	-4	-1	0	2	3	3	2	1	1	0	0
Rock Creek	-3	-3	-4	-3	-3	-2	-2	-2	-2	-2	-2	-2	-2
Sac River	109	151	24	-44	20	50	181	142	91	13	33	57	69
Singer Creek	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	92	129	-17	-79	-18	15	154	123	76	1	22	46	45

Average Monthly Gains to Streamflow from Groundwater, Water Years 2000 to 2018 (cfs)

Big Chico Creek Field Data Collection

Characterizing Stream-Aquifer Exchanges

Serving Stewards of Western Water Since 1993

Big Chico Creek Monitoring Locations

Total: - 25 CFS (Loss) from BCC01 to BCC06

BCC04 to BCC06 is often dry in the Summer

Big Chico Creek Watershed Above 5-Mile

- 5 CFS (Loss)

Characterizing Stream-Aquifer Exchanges

BCC02

Serving Stewards of Western Water Since 1993

BCC01

Big Chico Creek

Slide 15

Serving Stewards of Western Water Since 1993

Case Study II - Butte Creek

Characterizing Stream-Aquifer Exchanges

Slide 16

Serving Stewards of Western Water Since 1993

Vina Subasin Butte Basin Groundwater Model -Stream-Aquifer Interaction Estimates

	Monthly Gains from Groundwater (cfs)										Average		
Stream	Oct	Νον	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	(cfs)
Angel Slough	0	0	0	0	0	0	0	0	0	0	0	0	0
Big Chico Creek	-2	-3	-6	-7	-7	-8	-5	-3	-2	-2	-2	-1	-4
Butte Creek	-7	-10	-15	-15	-18	-20	-18	-14	-10	-7	-6	-6	-12
Dry Creek	-1	-1	-3	-2	-2	-2	-1	0	0	0	0	0	-1
Little Chico Creek	-1	-1	-2	-2	-2	-2	-2	<u>-1</u>	-1	-1	-1	-1	-1
Little Dry Creek	-2	-3	-6	-6	-6	-5	-4	-2	-2	-1	-1	-1	-3
Mud Creek	0	0	-1	1	1	2	2	1	1	0	0	0	0
Pine Creek	-1	-2	-4	-1	0	2	3	3	2	1	1	0	0
Rock Creek	-3	-3	-4	-3	-3	-2	-2	-2	-2	-2	-2	-2	-2
Sac River	109	151	24	-44	20	50	181	142	91	13	33	57	69
Singer Creek	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	92	129	-17	-79	-18	15	154	123	76	1	22	46	45

Butte Creek Monitoring Locations

Legend

- Camanche Creek Sites
- Butte Creek Sites

Waterways

Butte Creek

Scotty's Landing

- Camanche Creek
- Google Map Hybrid

Chico State

CC04

0 to - 3 CFS (Loss)

Camanche Creek

1 × 11 11 1			Statements Provide and a local	
Name	Desc	Latitude	Longitude	
CC01	Camanche Creek downstream of Parrot-Phelan Diversion	39.70958	-121.75175	
CC02	Camanche Creek near Midway	39.71145	-121.8082	2
CC03	Camanche Creek near Dayton Road	39.7002	-121.8495	guas Fri
CC04	Camanche Creek near start of M&T Ranch	39.68586	-121.88181	as Rd

- 7 CFS (Loss)

CC02

Bidwell Park One Mile

CC01 BC03

BC04

Esquor

BC06

BC01 Burnt Barn Distilling Co

USGS Gaging Station

Butte Creek

ProPacific Fresh

Name	Desc	Latitude	Longitude
BC01	Covered Bridge (BC01CBDG)	39.72845	-121.7034
BC02	USGS Gage (BC02USGS)	39.72229	-121.7117
BC03	Parrot-Phelan Diversion for MT Ranch (BC03PPDV)	39.70954	-121.7502
BC04	Durhan Mutual Water Company Diversion (BC04DMDV)	39.70218	-121.7763
BC05	Rancho Esquon Diversion (BC05REDV)	39.62226	-121.7739
BC06	Gorrill Diversion (BC06GRDV)	39.60229	-121.7852

BC02

- 2 CFS (Loss)

STERLING CREEK RANCH

Characterizing Stream-Aquifer Exchanges

4 km Lano Seco Unit.

Slide 18

Serving Stewards of Western Water Since 1993

10/02/2024

2

0

Case Study III - Feather and Yuba River Bathymetry and Stream-Reach Water Budgets

Serving Stewards of Western Water Since 1993

Feather and Yuba Rivers - Overview

- Focused on improvements to Yuba Groundwater Model (YGM)
 - Improved stage-discharge relationships
 - Improved stage-wetted perimeter relationships
 - Improved streambed conductance characterizations
- Intensive field data collection
 - 18 bathymetry sites
 - Over 100 Acoustic Doppler Current Profiler (ADCP) measurements transects performed
- Fully digital data collection including essential meta data (GPS, images, notes, etc.)

Characterizing Stream-Aquifer Exchanges

X

Fiddler On the Roof 🕒

TABLE MAP TASKS LOG MEDIA GRAPH H & J Marine gation District 😐 Spring Valley Produce Tacos Pico Rico

Summary <u>Table Tasks Log Media Graph</u>

5

Number of Submissions

Monitors DE_MON_00005_Jeff_Davids, DE_MON_00007_Erika_Sos, DE_MON_00009_Christopher_Sortor

Coordinates 39.2118936, -121.4405347

2024-07-24 09:27:00 2024-07-24 09:32:00

09-25 08:26:00 •

Copyright © 2024 Davids Engineering, Inc.

Characterizing Stream-Aquifer Exchanges

Slide 21

Serving Stewards of Western Water Since 1993

Report a map

10/02/2024

2000

Characterizing Stream-Aquifer Exchanges

Slide 22

Serving Stewards of Western Water Since 1993

Characterizing Stream-Aquifer Exchanges

Slide 23

Serving Stewards of Western Water Since 1993

- Below water bathymetry from *butterfly* ADCP measurements
- Kriging to create streambed surface
- Stitched together with 1M 3DEP DEM
- Levee-to-levee cross section created perpendicular to flow direction
- Stage-wetted perimeter created from crawling algorithm

Characterizing Stream-Aquifer Exchanges

Slide 24

Serving Stewards of Western Water Since 1993

- Below water bathymetry from *butterfly* ADCP measurements
- Kriging to create streambed surface
- Stitched together with 1M 3DEP DEM
- Levee-to-levee cross section created perpendicular to flow direction
- Stage-wetted perimeter created from crawling algorithm

Characterizing Stream-Aquifer Exchanges

Slide 25

Serving Stewards of Western Water Since 1993

- Below water bathymetry from *butterfly* ADCP measurements
- Kriging to create streambed surface
- Stitched together with 1M 3DEP DEM
- Levee-to-levee cross section created perpendicular to flow direction
- Stage-wetted perimeter created from crawling algorithm

Characterizing Stream-Aquifer Exchanges

Slide 26

Serving Stewards of Western Water Since 1993

Slide 27

Characterizing Stream-Aquifer Exchanges

Slide 28

Serving Stewards of Western Water Since 1993

Feather and Yuba Rivers - Stream-Reach Water Budgets

Characterizing Stream-Aquifer Exchanges

Slide 29

Serving Stewards of Western Water Since 1993

Conclusions and Next Steps

- Models are important for characterizing depletions of interconnected surface water (DWR guidance documents).
- However, models must be grounded in data to the greatest extent possible.
- Improvements to how models characterize stream-aquifer interactions can be improved by:
 - Refining stage-discharge relationships for stream nodes
 - Refining stage-wetted perimeter relationships for stream nodes
 - Refining understanding of stream-aquifer fluxes with stream-reach water budgets
- We are busy collecting stream reach water budget data as miscellaneous inflows/outflow, ET, and P are all reducing in the fall.

Characterizing Stream-Aquifer Exchanges

